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13.0 FINITE ELEMENT FORMULATION OF THE LAYER-WISE SHEAR DEFORM-
ABLE COMPOSITE SHELL THEORY

13.1 Introduction

3 Present Composite Shell Technology and its Limitations

I 13.1.1 Classical lamination theories

Plate and Shell structures made of laminated composite materials are often modeled as an

i equivalent single layer using classical laminate theory (C.L.T.) in which the thickness stress

components are ignored. The classical laminate theory is a direct extension of ciassical plate

and shell theory in which the well known Kirchhoff-Love kinematic hypothesis is enforced.

I This theory is adequate when the thickness (relative to side or radius) is small so that the varia-

tion of the field variables through the thickness direction is minimal. However, laminated plates

and shells made of advanced filamentry composite materials are succeptible to thickness effects

because their effective transverse moduli are significantly smaller than the effective elastic

modulus along the fiber direction. Furthermore, the classical theory of plates which assumes that

i the normals to the midplane before deformation remain straight and normal to the plane after

deformation, underpredicts deflections and overpredicts natural frequencies and buckling loads.

3 These discrepancies are due to the neglect of transverse shear strains. The errors in deflection,

stresses, natural frequencies, and buckling loads are even higher for plates made of advanced

Icomposite. The range of applicability of the C.L.T. solution has been well established for lam-

i inated flat plates by Pagano [see Pagano 1989]. These analyses have indicated that a theory

which accounts for the transverse shear deformation effects would be adequate to predict the

' gross behavior of the laminate.

S 13.1.2 Shear deformation theories

3 In order to overcome these deficiencies in C.L.T., refined laminate theories have been pro-

posed. These are single layer theories in which the transverse shear stresses are taken into

I account. They provide improved global response estimates for deflections, vibration frequencies
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and buckling loads of moderately thick composites when compared to the classical laminate

I theory. A Mindlin type first-order transverse shear deformation theory (S.D.T.) was first

I developed by Whitney and Pagano [1970] for multilayered anisotropic plates, and by Dong and

Tso [1972] for multilayered anisotropic shells. Both of these approaches (C.L.T. and S.D.T.)

I considered all layers as one equivalent single anisotropic layer, thus these approaches are inade-

quate to model the warpage of cross-sections, that is, the distortion of the deformed normal due

3 to transverse shear stresses. Furthermore, the assumption of nondeformable normal results in

incompatible shearing stresses between every two adjacent layers. Also the latter approach

requires the introduction of an arbitrary shear correction factor which is dependent on the lami-

nation parameters for obtaining accurate results.

I 13.1.3 3-D Anisotropic elasticity

In another class of composite problems, i.e., for composite structures with a thick cross-

section, two-dimensional plate analyses are inadequate because through-thickness stresses (inter-

I laminar and normal stresses) are comparable in magnitude to the other stress components. Thus

a three-dimensional finite element analysis is necessary in order to calculate the through-

thickness stresses accurately. Since material properties vary from layer to layer due to the

change of the ply orientation, finite element modeling for very thick composites throughout the

I thickness becomes extremely difficult and expensive. Traditional, three-dimensional finite ele-

ment methods, based on one layer per element, are not computationally efficient for analysis.

I New Directions in Composite Shell Technology

5 The exact analyses performed by Pagano [1989] on the composite flat plates have indicated

that the distortion of the deformed normal is dependent not only on the laminate thickness, but

3 also on the orientation and the degree of orthotropy of the individual layers. Therefore the

hypothesis of nondeformable normals, while acceptable for isotropic plates and shells is often

I[ quite unacceptable for multilayered anisotropic plates and shells with very large ratio of Young's
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modulus to shear modulus, even if they are relatively thin. Thus a transverse shear deformation

theory which also accounts for the distortion of the deformed normal is required for accurate

i prediction of the behavior (deflections, thickness distribution of the in-plane displacements,

natural frequencies, etc.) of multilayered anisotropic plates and shells.

In view of these issues a variadonally sound theory that

I Accounts for the 3-D effects

3 Allows thickness variation, and

. Permits the warping of the deformed normal

I is required for refined and sophisticated analysis of thick and thin composites.

The approach proposed in this work utilizes a displacement field which fulfills a priori the

static and geometric continuity conditions between contiguous layers. It is worth mentioning that

the number of partial differential equations in the resulting system is independent of the number

of plies. In addition, the order of the system is the same as in the first-order shear deformation

3 theory. The chief advantage of the assumed displacement field rests on its capability to model

the distortion of the deformed normal and to satisfy the contact conditions ab initio, without

E increasing the number and order of the partial differential equations with respect to the first-u order transverse shear deformation theory. Furthermore, it is feasible to employ this formulation

for constructing plate and shell finite elements via the finite element displacement method.

I
I
I
I
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13.2 A C-ontinuous Theory for Composite Laminates

The Continuum Theory for Composite Laminates as presented in the previous chapters

U requires Cl-continuity of shape functions, just as does the classical Poisson-Kirchhoff Plate

I Theory and the classical Bemoulli-Euler Beam Theory.

From a mathematical viewpoint, if the stiffness integrands involve derivatives of order m,

then the requirements for the convergence of the Finite Element Solution to the exact solution

with the refinement of the mesh are

i i) Shape functions should be smooth to order Cm on each element interior, f?;

ii) Shape functions should be C-'l continuous across each element boundary r.

5 iii) Shape functions should be complete.

U Finite elements that satisfy these properties are called CONFORMING, or COMPATIBLE

elements.

Continuous (i.e., C0) finite element interpolations are easily constructed. The same cannot

I be said for multidimensional C1-interpolations [Hughes, 87]. Furthermore, there has been an

I increasing trend in the literature to go towards elements based upon theories which accommo-

date transverse shear strains and require only Co-continuity [Hughes, 87]. Although this

3 approach is not without its own inherent difficulties, it opens the way to a greater variety of

interpolatory schemes.

13.3 New Ideas Proposed in the Present Theory

In the following section we present a Finite Element Shear Deformable Theory for thick as

SI well as thin composites. The proposed theory has a number of noteworthy attributes which

directly address the technical drawbacks present in most of the theories that have been proposed

for composite analysis to date.

I BASE



I
13-5

S IThe displacement field proposed in this work is continuous in 3-D where as the rota-

U tion field is layer ,,,ase continuous (in 2-D) and can be discontinuous across the finite

3 element lay.s through the thickness direction.

0 The displacement field fulfills a priori the static and geometric continuity conditions

3 between contiguous layers.

3 . The novel idea in the assumed displacement field lies in its capability to model the

distortion of the deformed normal, without increasing the number and order of the par-

3 tial differential equations with respect to the first-order transverse shear deformation

theory.

I • Another new idea in the theory is its 3-D feature, thereby modeling the interlaminar

conditions and predicting the 3-D edge effects more accurately.

* A salient feature of the proposed theory is that, at most, only first derivatives of dis-

3 placement and rotation fields appear in the variational equations. The practical

consequence of this fact is that only CO continuity of finite element functions is

I required which is readily satisfied by the family of Lagrange elements.

3 * The number of partial differential equations in the resulting system is independent of

the number of plies and their orientations in the composite.

m . Another advantage of the proposed composite shell theory lies in the greater flexibility

i in the specification of the boundary conditions.

* The theory covers a wide range in the sense that in one limit case when there is only

3 one layer of proposed elements through the thickness, one recovers the features of the

standard Shear Deformation Theories (S.D.T.). However the added advantage in the

present case lies in the 3-D feature of the theory which controls the variation in the

3 thickness via the Poisson terms rather than ad hoc mathematical tricks as done in the

literature.

3 * In another limit case, one can model the composite with one element per ply through

I BASE
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the composite thickness, a procedure that is typically done while using the standard

U 3-D anisotropic elasticity elements. The added advantage of the proposed theory in

this limit case is that because of the shear deformation capability of the proposed ele-

ments, they model the warping of the deformed normal more accurately, thereby

3 improving the bending behavior.

"* From a practical design point of view it provides the engineer the freedom to deter-

1 mine the precision in analysis. If a general response of the composite structure is

required, the composite can be modeled with one element through the thickness. On

the other hand, the designer can model the thickness with as many layers of the pro-

3 posed element as deemed necessary to achieve the required accuracy.

"* Furthermore, it is feasible to employ this formulation for constructing plate and shell

I finite elements via the finite element displacement method.

E 13.4 Main Assumptions of the Plate/Shell Theories

I1. The domain Q is of the following special form:

fl-((x,y,z)le I ze [-RI,-I- , (x,y)e Acle) (13.4.1)

I where t is the plate or the shell thickness and A is the area of the reference surface.

1 2. 033 =0

I • plane stress hypothesis (see Hughes, 87, p. 311).

I 3. U,.(x,y,z) = -zO.(x,y)

3 This assumption implies that plane sections remain plane. 0a is interpreted as the rotation

of a fiber initially normal to the plate reference surface.

! BASE
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4. U3(x,y,z) = W(x,y)

This means that the transverse displacement w does not vary through the thickness.I
i 13.5 Main Assumptions of the Layer-wise Shear Deformable Shell Theory

I 1. The domain 0 is of the following special form:

Q f={(x(Yz) R ?i I 0 e, T P), (xy)(• A() c (13.5.1)

3 i.e., there are I layers of finite elements in the thickness direction, and A(0 is the area of the

reference surface for that layer and T is the total thickness T of the composite shell.I
2. The displacement field is assumed to take the following form3

U,((x,y,z) = ug4(x,y,z) - z('e(01(x,y) (13.5.2)

I here ug)(x,y,z) are the displacements and O0(l(x,y) are the fiber rotations for the Pt layer

1 reference surface and ý r [0,1] is a parameter that establishes the position of a point from

the reference surface in the thickness direction.U
3. The displacement field in the thickness direction is assumed to be a function of z

U40 = u3(x,y,z) (13.5.3)

I By this assumption the transverse displacement, u3 does vary through the thickness thereby

3 producing through the thickness strains which result in thickness variation in the shell.

3 4. As a consequence of the above relaxation

5 G 33 *0
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i.e., we do not invoke the plane stress hypothesis.

5. We know from the elasticity theory that the displacements and stresses at the interface

I between th and (1+1)th bounded layers must satisfy the following contact conditions

IU U (13.5.4a)

IU U3(1+1) (13.5.4b)

3 In addition, continuity of stress tractions requires that the following stress conditions at the

interface of layers be satisfie!
S (13.5.5a)

A consequence of the second assumption above, (13.5.2), is that each finite element layer is

I associated with non-normal cross-sectional rotations which are assumed to be the same for all

representative elements or plies in the finite element layer in accordance with the Mindlin

kinematic assumption. Another consequence of the second assumption is that it results in

independent shear deformation of the director in each layer and allows the warping of the com-

posite cross-section. It also results in discontinuous strain fields across the different material

sets, thereby creating the provision of stress continuity across the material interfaces. Conse-

i quently, the fifth assumption is inherently satisfied.

The proposed theory goes one step further than the present shear deformable theories for

composite laminates in that the non-normal cross-sectional rotations may or may not be the same

5 from one finite element layer to the other. This allows warping or deformation of the normal,

thus producing a higher order displacement field through the thickness direction. Consider the

interface between P and (l+1)th finite element layers and impose the continuity of the tangential

I BASE
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components of the displacement field via

U UQ1

I therefore

I ue0(x,y,z) + z(0 e0(P(x,y) - uV')(x,y,z) + z(1+D•0a(1+1)(xy) (13.5.6)

I for the interface between I and (I+1)" layer

5 = +1 for d'layer

3 =0 for (1+1)th layer

E Substituting in Eq. (13.5.6)

g u•"+1)(x'y'Z) - uT0(xYZ) = z(%'O 0(xY)

I 0
0t(x'Y) = 1 [uT 1 )(x,y,z) - ue(x,y,z)] (13.5.7)

It implies that in a discrete sense

S9t 0 (x,y) = ut,(x,y,z) (13.5.8a)

S2(e0 (x,y) = u:(x,y,z) (13.5.8b)

So when we substitute these in ya3 expressions we obtain the modified shear strain expression.

Furthermore, in examining U,(,) and UP in assumptions 2 and 3, it is easy to realize that the

5displacement field assumed is a continuous function of z coordinate for all values of u(')(x,y,z)

and O(((xy). Consequently, the requirement of continuity of the displacement field is automati-

I cally satisfied.

I
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U 13.6 Geometric Representation

I 13.6.1 Proposed Composite Shell Element

Figure 13.1 shows a typical configuration of a doubly curved composite shell. It can be

made of numerous plies with variable material properties, reinforcement fiber orientations and

3 ply thicknesses. For all practical purposes, these plies are stacked on top of each other in a cer-

tain predefined sequence. We call this sequence which repeats itself in the thickness direction as

3 a "representative element." In our mathematical modeling of the mechanics of shell, no such

assumption has been made which limits the number of individual plies, ply thicknesses, their

orientation or their stacking sequence to join a representative element. At the same time, there is

3 no limitation on the number of such representative elements in the thickness of the composite

shell. Consequently the finite element model developed can be applied, with the same ease, both

3 at the individual laminate level (i.e., the microstructure level) or the representative element level

(i.e., the macrostructure level) or even to a congregate of representative elements.

U

Sx
2

Fig. 13.1a
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As shown in Fig. 13.1, the composite is discretized via four finite element layers through

3 the thickness. As noted previously, each of these layers could be representing either the micro or

the macro structure of the composite. 3

33

33

TU1

((1)

122

Fig. 13.1b
Stress representation on a typical finite element layer

g Let us concentrate our attention to the case in which the composite is composed of four

laminates, each being modeled via a finite element layer. A typical such layer is shown via the

3shaded region in Fig. 13.1 a. The stresses and stress couples acting on this layer are shown in

Fig. 13.1b. Figure 13.2 shows a schematic diagram of the geometry of the layer with the refer-

3 ence surface associated with the bottom surface of the layer. In our presentation, a typical corn-

3 posit', shell element has its reference surface associated with its lower face as shown in Fig.

13.2.

I
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I

2L L

X3 L

Fig. 13.2

I A more detailed account of the nodal degrees of freedom and stresses and stress resultants

at the finite element level is shown in Fig. 13.3.

I 
hifh1

(L------------ ---

h 12

M U'
12I •X S 1

21 2I~ xl

x2

3 Fig. 13.3
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U 13.6.2 Kinematics of the Deformation Through the Thickness

a i Figure 13.4 shows a thick composite laminate with "m" number of representative elements,

each containing "n" different layers. In the "Layerwise Shear Deformable Finite Element

Theory for Composite Shells" that we are presenting in this work, the total thickness T is divided

I into L finite elements through the thickness. Each layer of finite elements through the thickness

is associated with a reference surface which is coincident with the lower surface of that layer.

S The total thickness is given by

5 t1 +t 2 + --- +t£=T (13.6.1)

3 and reference surface of 1 st layer lies at

3 t=O

Reference surface for the second layer of finite elements lies at

i t =ti

Similarly for the 3rd layer

I
t = (tl+t2 )

It is very important to note that the normal fiber rotation (i.e. O) ancý lie slope (i.e., U3,a)

3are not necessarily the same and thus transverse shear strains are accommodated. This is to be

contrasted with the classical lamination theories (C.L.T.) in which Oa = w., and consequently the

I transverse shear strains are zero.

3 Within each layer (of finite elements), the normal to the reference surface for that layer,

rotates by Oa., thereby generating shear strain yo3. Consequently, in the deformed configuration,

node 2 (through the thickness, see fig. 13.4) moves to the location 2'.

I
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Now, the normal to the undeformed reference surface in the second layer rotates by an

3 angle Oi, generating shear strain y.. (Here I = 2, i.e., finite element layer #2). Because of the

continuity of the displacement field in the thickness direction we obtain the new locations of

I finite element nodal points as 1', 2', 3' and 4', shown in the deformed configuration. It should be

I noted that this new location of points produces a higher order variation of strains through the

thickness direction. This is a very important feature that precludes the need for introducing ad

I hoc polynomial expressions to model the higher order variation of displacement field through the

thickness.
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Fig. 13.4 Shell Kinematics. Variation of Transverse Shear Strains Through the Thickness
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13.7 Finite Element Description of the Thick Composite Shell

U 13.7.1 Doubly curved c .nMpsite shells in 3-D

3 The geometry of a typical quadrilateral shell element is defined by the following relations

I Okko,,o = x-(0(4,q) + (13.7.1)

I -(4;,) = Na(4,T)•P (13.7.2)

X(=(t,,) = I Na(4,11)Xa(t) (13.7.3)

XP(O) = Z•0(•)X0 (no sum) (13.7.4)

Za•"(C) = Nt(C)Z.O + N-(4Z4- (13.7.5)

1

(0 = - (1+0) (13.7.6a)

1

(13.7.6b)

where

x(l): the position vector of a generic point of the shell for layer 1.

3 i0: the position vector of a point in the reference surface, for layer 1.

X(t): the position vector of a generic point relative to -(I) which defines the director through

the point for layer I (in computational shell literature, X) is referred to as fiber direc-

5 tion).

i,(r0: the position vector of nodal point "a" in layer 1.

I Na: denotes a two-dimensional shape function associated with node "a".

3 nen: the number of element nodes in the reference surface of layer 1.

I nBASE
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11): a unit vector emanating from node "a" in the director direction.

Za: a "thickness function" associated with node "a", which is defined by the location of the

3 reference surface.

3I The above relations represent a smooth mapping of the biunit cube into the physical shell

domain. For "%" fixed, the surface defined by (13.7.1) is called a lamina and for "k,Ti" fixed, the

I line described by (13.7.1) is the director. The directors are, in general, not perpendicular to the

laminae. Sometimes the director is referred to as the "pseudonormal."

For a particular choice of two-dimensional shape functions, eqs. (13.7.1)-(13.7.6) are pre-

cisely defined upon specification of i,(), fQ(), Z,(0. and Zj' (a = 1,2,...n.). It is convenient in

3 practice to take as input the coordinates of the top and bottom surfaces of the shell along each

nodal director (x.(O" and x.(O-, respectively) and a parameter ý e [-1,+1], which defines the loca-

3 tion of the reference surface. For example if ý- -1,0,+l (respectively), then the reference sur-

face is taken to be the bottom, middle, top (respectively) of the shell. From these data we may

I calculate

I (1-)XI + I (1+J)x M+ (13.7.7)

I"(= x(O.- x.(O- (13.7.8)

- -% • (1-+7) IIxaP+ -- II (13.7.9b)I 2

I where I II. denotes the Euclidean norm (i.e., IIx1I-- (x=IX22X3

I
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Lamina Coordinate SystemsI
At each integration point in the element a Cartesian reference frame is erected so that two

I axes are tangent to the lamina through the point. The frame is defined by its orthonormal basis

vectors el4,4,4 in which eL is perpendicular to the lamina. The basis vectors are calculated as

follows
I~~ / , constant

I
!

Fig. 13.5 Typical lamina coordinate system (4 = constant surface)

Construct unit tangent vectors to the 4- and 11- coordinate directions:

f •= ,X,,, (13.7. 1Oa)

ii xg -. 11 (13.7.1Ob)

5 Consequently

e= e eIxe (13.7.11)Ieý') x <01

I The vectors tangent to the lamina are selected so that the angle between eL and ejO is the same
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as the angle between and e4 and so that the eLeL-basis is as "close" as possible to the

1 ~ ~ee',e4e' basis. Thus

I eL) 013.7.12a)

eL2 = 2 (e.(o+e ) (13.7.12b)

where

1 ey 0 =)2 (13.7.13a)
I (e1O + x r)1

Iert) ,e3 x e(.0, (13.7.13b)

Furthermore, we also define the orthogonal matrix to transform quantities from the global coor-

I dinate system to the lamina system

Sq =[%1 ] = [eL ejeT (13.7.14)

II
U

I
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L

3! ........

3 Fig. 13.6 11 = constant surface

For the present caseI
el4=A 1 , eL= , , D (13.7.15)

i When specialized to flat geometries these become

ei-'Ai=E,= 0'(3.7.16a)

5Le 2 =A 2=E 2={ I} (I13.7.16b)

Le eI=D=E 3={ 0}( .71c

I where El, E2, E3 are unit vectors in the Cartesian frame.

I
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Fiber Coordinate SystemI
A unique coordinate system is erected at the nodes on the reference surface for each layer

and is used as a reference frame for rotations. One of the directions of this frame is required to

be coincident with the director direction. This one condition is not sufficient to define the frame.

I lThe following algorithm [Hughes 1987] can be employed to define this frame.

I Let X denote the unit basis vector in the director direction and elxe2,e3 denote the global

3 Cartesian basis, i.e.,

3 el-{O} e2={ }' e3={O }

3 The global Cartesian components of X are denoted by Xi, i = 1,2,3.

I Algorithm

3 1. Leta,= I&Ii=1,2,3.

2 j=1

3. If a1 > a3, then a3 = a, and j =2.

34. Ifa2>a3,j=3.

5. ef=X

6. e2= (•X ej)/Il Xx ejII

37. ef=e×xX

lThe orthonormal fiber basis obtained (i.e., ef,44) satisfies the condition that if X is close

to e3, then ef,e2f3f will be close to ele 2,e3, respectively.

I
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13.7.2 Kinematics in the context of Finite Element MethodI
The displacement of the shell is assumed to take the following form:I

u(/(4,•,t) = u-i((,rj) + u(o(,rjt) (13.7.17)
n-

, =(13.7.18)

I :

u .= Z Na•,(¶.)u,() (13.7.19)

I. ( •) U = (no sum) (13.7.20)

I where

u0 is the displacement of a generic point in the shell layer 1.

S •V) is the displacement of a point on the reference surface of the shell layer 1.

I U() is the "director displacement" for the shell layer 1.

na3.) = 10 + fj Pi

I where

5 (iiai - u(a+na(Pq

The vector U(0 is constructed such that the director may rotate, viz.

Q* = 0,e.(e1 - ,PS

The quantities 0,(10 and OT represent the rotations of the fiber about the base vectors ealIf and

3 ef, for shell layer 1, respectively.

I
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13.7.3 Appearance of 3D effects in the theoryI
Typical shell theories have shell description and parameterization done via a 2D reference

I surface and a director field which is orthogonal to this surface. Plane stress hypothesis is nor-

mally invoked. Based on the assumption that the thickness of the shell is small, some of these

theories do not permit the thickness variation thereby making the thickness strains identically

U equal to zero. In other cases, [Simo and Fox 1988], the variation of the shell thickness is

accounted for by associating a parameter with the director field and bounding it so that the thick-

3 ness does not take unrealistic values. First allowing and then later controlling the thickness vari-

ation of shells is an important issue and it arises because of the introduction of engineering

I approximates to convert a 3D theory, representing 3D phenomenon, to a 2D theory and still

expecting it to somehow manifest the effects in the third dimension.

In our description of the shell, there is a third dimension, i.e., through the thickness dimen-

sion which permits the development of strain field, and thereby modeling thick laminates in a

more realistic way. Furthermore, we do not have to introduce auxiliary functions in the director

field to control the shell thickness. In our theory, because of the Poisson effects in the third

3 dimension, strains develop through the thickness and account for the thickness variation.

I

I
I

I
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13.8 Derivation of C matrix for a representative elementI

I 33

2 

2

I

Fig. 13.7 Schematic diagram of a "representative element" and its constituent laminates

Suppose, the representative element is made of two laminates of the same material but with

reinforcement fiber orientation at +0 and -0 degrees with respect to the extension direction.

Let C(,,) (ax = 1,...number of plies in representative element) represent the C matrix (consti-

tutive matrix) for the laminate with regard to its mutually perpendicular planes of elastic sym-

U metry. In general it can be written as

I
I
I
I
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C11 C12  C13  0 0 C16

C12  C2 C23 0 0 C2 6

SC 13  C23  C33  0 0 C36

o o o c" c45  o (13.8.1)

0 0 0 C54 C55  0

L C16  C2 C36  0 0 C66

3 where a represents the number of laminates in a representative element.

3 Let X1 represent the direction along the loading for the composite element and let X3

represent its thickness direction. This axis is assumed to be perpendicular to the plane of elastic

I Isymmetry. The C(a) for a laminate can be projected from its mutually perpendicular planes of

elastic symmetry onto the composite coordinate system (X1,X2 X3) about the X3 axis via the fol-

I lowing transformation 
matrix.

I C2  S2  0 0 0 CS

S2  C2  0 0 0 -CS

O 0 1 0 0 0
Qýa) 0 0 0 C -S 0 (13.8.2)

0 0 0 S C 0
I -2CS .CS 0 0 0 (C&-S 2)

I where C = cos 0, S = sin e.

I Then the transformed constitutive matrix is obtained as

I C'() = Q(a)C(a)Q(a) (13.8.3)

I In general, C'() will have the following form
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C'll C'12  C'13  0 0 C'16

3C' 12  C 22 C'23  0 0 C26

3C' 13  C'23  C'33  0 0 C'36

0 0 0 C'4 C'45  O (13.8.4)

30 0 0 C'45  C'55  0

C'16  C26 C'36  0 0 C66

We evaluate the C( . i.e., the constitutive relation for the macro element via the

U expression

SC(NI. elem.) = mC'(1 ) + (1-m)C'(2) (13.8.5)

where m = •1 /•2 < 1.

3 Now C(rp" Im.) provides us an effective C matrix which repeats itself in the composite in

its thickness direction. In other words it represents an effective material in which the effects of

various fiber orientations and different material properties have been integrated in a consistent

3 marner.

(maco) f C(rep.elm)dX3  (13.8.6)
0

I
U
I
I
I
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I

3 Fig. 13.8 Finite element mesh, through the thickness

Figure 13.8 shows a typical representative element, composed of "n" plies (in this figure, n = 2).

3 There can be "m" such representative elements in the thickness direction.

3 Now that we have shown a consistent way of arriving at the macro level from the ply level,

we are in a position where we can talk about its numerical implementation. There are a number

I of important factors which have to be considered and are summarized below. These technical

issues make the present implementation different from a 3D continuum model and also from the

standard 2D shell elements, whether they are based on the degenerated shell approach or the

Cosserat surface approach.

From an implementational standpoint, this theory, in effect, combines the 2D shell effects

with the 3D continuum effects. It is a well known fact that a shell can be analyzed as a congre-

I gate of 3D elements in which the in-plane dimensions of the finite elements are of the order of its

thickness dimension. The drawback lies in the tremendous storage requirements and the CPU

intensive calculations of the large systems of equations. A shell formulation allows the same

3 engineering accuracy with considerably less elements, thereby making the computations cost

effective and economic.
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Following is a brief presentation of finite element formulation.

13.9 Finite Element Formulation

13.9.1 StawnE Form of the Problem

To the general equilibrium equations we add the boundary conditions

u. = , on Ir. (13.9.1 a)

U3 = U3 onFus (13.9.1b)

IOa = 0. on re (13.9.1c)

I In addition

I =:T o'3 on r,' (13.9.1d)

qan, =q on rq (13.9. le)

SalPnp = SU on F. (13.9.1f)

where Fj u ru3 corresponds to the boundary where displacement type boundary conditions are

I applied; Fr, Uj Fq corresponds to the boundary where traction type conditions are applied; Fr

corresponds to the boundary with prescribed rotation; r. corresponds to the portion of boundary

with applied moments.I
As usualI

n = nE,, a n.A. (13.9.2)

I denotes the unit outward normal to the boundary al of domain Q.

I
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I

I
I
I
I

Fig. 13.9 -2

I 13.9.2 The Weak Form of the Equations

Multiplying the strong form of the problem with the admissible variations, integrating by

parts and using the prescribed essential and the natural boundary conditions we arrive at the

weak form of the problem.

The spaces relevant to the problem are

3 S = ((u,u 3,e) l (u,u 3,O) = H'1(Q) , (u,u3 O): S -4 Rx Rx R, s.t. u = di on Fu ,
(13.9.3)

U3 = 03 on ru3 , Oc = 0, on TO)

where S is the space of trial displacements and trial rotations, respectively.I
The associated space of weighting functions isI

V ( ,I (,3,) r II(on) , ( 9=,03,i) S - Rx Rx RB, s.t. A S E 0 on uI (13.9.4)

| •,:U3Oonru, , U;oonrq) A S E
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where H1(f2) denotes the space of square-integrable functions along with their generalized

derivatives defined over a., and IL(Q) is the subset of H'(Q) whose members satisfy zero essen-

tial boundary conditions.I
13.9.3 Finite Element NomenclatureI

Summary of Composite Laminate CO-Theory NotationI
U(n = <UI,U2 ,U3 >(Or displacement vector

(I) = oaT = <e1,e2>(O> rotation vectorI
x J( = 8 6 0((a).= curvature tensor

U41 AB=u-6, u3(j - 0shear strain vector

S, = 1 I j Q dt moment (stress couple) tensorI no

=o - f radt shear force vector

I fprescribed boundary displacement

prescribed boundary rotations

3 The variational equation for the Composite Laminate Theory for Shells is derived from the

variational equation of the three-dimensional theory by making use of the preceding relations.I
Let 0 c I& be a bounded open set with piecewise smooth boundary I'; nd > I denotes the

I number of spatial dimensions. r admits the following decomposition

I r U Ih = r (13.9.5a)
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I 1cIh=O (13.9.5b)

where r. and rh are the portions of the boundary with prescribed essential and natural boundary

I conditions, defined as

Sr. = r u r (13.9.6a)

3 =r. UrqUr. (13.9.6b)

I1. The domain Q is of the following special form

3 fl = ((x,y,z) E R1 I z e [OýXa], (x,y) e A c Re) (13.9.7)

2. The integrals appearing in the three dimensional variational equations are replaced by

I
.. d= f ... "dX 3dA (13.9.10)I 0A 0l17

*
j.dr= i< ... >dA+ .. J dx3 ds (13.9.11)

where ds is measured along the perimeter of A.

13.9.4 Finite Element Stiffness Matrix and Load Vector

The finite element stiffness matrix and load vector may be obtained directly from the

3 matrix form of the variational equation. The finite element approximations for u,ii,O and 9 are

denoted by uh,iih,Oh and Uh, respectively.I
In a typical element, possessing %, nodes,I

uh T Nauh (13.9.12a)
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e o= N, h (13.9.13a)

a=l

7,= Na iah (13.9.13b)

where N, is the shape function associated with node "a", uh, ffh oh and ih are the a"h nodal

3 values of uh, u-h, 0" and Uh, respectively. It is not necessary to assume that Oh and uh be defined

in terms of the same shape functions and nodal patterns. However, for the present implementa-

tion, this will be the case.

i 13.9.5 Nodal Degrees of Freedom

Sd = (d;) (13.9.14a)

U15

U281

d- U3 a (13.9.14c)

I
U2-h

d' ;- iih (13.9.14)

I where p is the local equation number at the element level.
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13.9.6 Matrix Expressions

Stress Vectors

The resultant stress vectors for an element which has the 3D-effects of an elasticity element

3 and 2D effects of a shell like element are:

I - R inplane (l3.9.15a)

S| shear (13.9.15b)qfo
3 a-- I: bending (13.9.15c)

I U-f (•3 through-the-thickness (13.9.15d)

£ Strain Vectors

5 The strain vectors corresponding to the stress vectors are

j - (9 inplane (13.9.16a)

S=shear (13.9.16b)

C i1cf bending (13.9.16c)

II
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Ze= {y4q) through-the-thickness (13.9.16d)

We can combine the strain vector for inplane effects with the strain vector for through-the-

3 thickness effects to yield a vector that incorporates 3D effects

I =, (13.9.17)

13.9.7 Matrix Differential Operators

I The strain vectors can be written in terms of differential operators as follows

1 AI a/ax2
A T alaX2

=, DT a/X 3  u (13.9.18)3 ATD aax2 + AT a/ax t

For the case of flat geometry and linear analysis

A, 0'I{ } ,A2={ 01},D={O}0

m The matrix differential form for the modified membrane effect then becomes

3Bi (13.9.19)
[a/ax2 + a/axlJ

SSimilarly, for the shear operator

a == YO (U3., -o)=- (u3,a - O%)

I BASE



13-35

Remark: Note the introduction of the rotation field in the above strain-displacement relation

8c= [DTbTax AZ{ ) } (13.9.20)

3Therefore transverse shear strain vector 8 is

3~ 8= [fis Bsb]{

3 where

I ~ Dm/aX]I AT]
sm DT x 2  ; b=[ A]

3 for flat geometries:

|T
BS SM aXBIb [ a/ax 2  Al (13.9.21)

Following the same lines, the bending strain vector , which comprises of the operators

S(13.9.16c) and bending membrane coupling, can be written in terms of matrix differential opera-

tors:

3 where

3 [ a/aX 1  ] [ iA xl

[ T Da;X | Bbb= Ai/aX2  (13.9.22)
DT a/WX + DT a/aXI AT Wa2+ ATaalID.

I Specializing for flat geometries

I BASE



3 13-36

I In = o101, f!bb = /ax2
a/fX2 + a/aXI

I Finally, a total matrix differential operator b can be defined which produces the total strain vec-

tor i when applied to the displacement field u and the rotation field 0:

I where

I BM 0

B3rn Bsb (13.9.23)
Bbl B•b

i 13.9.8 The Strain Displacement Matrices

Slows:We can write the matrix differential operators in terms of element shape functions as fol-

o NO 0 00 I
0N 0 No 0 0 (1.3.9.24a)

Na.2 NO1  0 00

A 0 0 NB[2 01 -N a o

Bb. 0 N0 0 -N. (13.9.24c)000 Na.2 Na.1

i where "a" stands for the node number.
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I a•= B%. = W Bsk

B b. Bbc% B "

"13.9.9 Stiffness Matrix

I Using the finite element assembly operator, the stiffness matrix is obtained as

K- K* (13.9.25)

where L is the total number of finite element layers through the thickness and "nej is the total

3 number of elements in each layer.

3 We can also write k as

K=A [ k memb + k e(' k bending+ kg ]j
6=l

-- +[ k b ( ") + k c('] (13.9.26)

where we have combined the inplane membrane effects with through the thickness effects to

I engender the modified ik b.

I Let us consider each of the stiffness contributions one by one.

I . Modified rT.mbrane stiffness

i where

I
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Ii .)=_"f J BMAT Cg) Bmbjdd- 0 (13.9.27)
S "0 U4 44x4 4x5

where C. is the constitutive matrix for membrane effects for layer 1, L denotes the total number

I of finite element layers and

+ +1

d I=' f ... d~drj (lamina integral)
0 -1 -1

j is the determinant of the Jacobian defined as

I~1. x j] xl,•xl,

j=det X2 • 2 X2.1
S[X 3,4 X3,.q X3.;

i We can write the above equation as

Q "'* T C m (A '' i)

I k0= Bi Ct)B' 4 w0  (13.9.28)
1=1

3 where b is the integration rule required to exactly evaluate the membrane effects. In this

equation we have replaced the integral sign with summation over all the integration points and

I have also multiplied by the corresponding weight w(i). Since it is a volume integral, so the loop

over the nodes covers all the nodal points in the element. Furthermore we need a 2 x 2 x 2

integration rule to evaluate all the monomials in the integral exactly. [Note: 2 x 2 x 2 rule is for

I an 8-node brick element.] We need to use the appropriate rule for higher order elements.

B
i
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I . Bending Stiffness

kbe(d= [k9_jI

kIf = BbC b() bd 7dO

i where Cb() is the constitutive matrix for the bending effects for layer 1, and j is the determinant of

the 2D reference surface Jacobian defined as

J=det XI li
tI XI., X~I'2.1

i=l

3 The nomenclature used in the proceeding expressions is defined as below.

3,6: finite element nodes associated with the reference surface (1 <= 1, 6:< fi.)-

Inint,ý): integration rule required to exactly integrate the bending contribution.

Bb: strain displacement matrix associated with bending.

fin: number of nodes associated with the reference surface.

I . Shear Stiffness

II k= [k'gLI

k 0 ,= e BT Cs() BssJd '

where Cs(t is the constitutive matrix for the shear effects for layer 1. Consequently

k k -h.e, B5 C()Bsj w 0) (13.9.30)
i=BAS
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13.9.10 Evaluation of StressesI

Let us consider each "layer of finite elements" through the thickness direction. Let Cb(O and

3 C,( represent the inverse of the in-plane and out-of-plane parts of the compliance matrices for

the layers 1. As noted previously, we are proposing a "layerwise shear deformable finite element

theory for thick composites." Consequently, the bending contribution and the shear contribution

I to the stiffness matrix are obtained by summing over the corresponding contributions for the

individual finite element layers. For each layer 1, Cb(0 and C,(0 are defined as follows:

Upja : Cb(- }4 (13.9.31)

C11 C12 C16

CbT= C1 C22 CMC16 C26 C66

I Combining the in-plane membrane effect with the through-the-thickness effects in the element

I clL~bU 1.1  )
O IL = U2, J (13.9.32)

where q= is the modified membrane stress for finite element layer 1, and C(1) is defined as

C12 C2 CMC 26
C13 C23C3 3

U Similarly
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C (13.9.33)

13.9.11 External Force Vector

Body Force: The element body force vector is given as

II f•dy = (f:dy)

SfOdy = j j NT f j d~d 0 (13.9.34)
5xl r0 0

3 where

S~o -- e N.ZCe,,
N£ 0 0

S-NZe f N.ZeC,

0 N , an a~

NA3a2  NZIe

I Surface Force: The element surface force vector is defined by

Ifaffxt h 
Top

fa1~X 3 d ' = 0 Bottom1  (13.9.35)

3 where k3 is the thickness parameter, h is the surface force vector (per unit surface area) and j.

defined as

B
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is the surface Jacobian of the reference surface. The surface force includes both pressure and

I shear which can be defined as below.

3 Ia) Pressure: In our case

3 h =-:X3pn (k3 =0 or X3 = ma) (13.9.36)

ek x N I

I where p is the pressure and n is the unit normal vector to the composite surface.

U b) Shear: We assume that the shear is specified in the t and TI directions on the surface in ques-

tion. In this case the surface force vector is given by

h = h~et + he. (13.9.37)

where ht and hN are the shear in the 4 and T directions, respectively.

Edge Force: Suppose we wish to apply a distributed loading along an Ti = +1 or -1 edge. Let h

3 denote the distributed surface force. The nodal forces are

+1 f3fSfsdge (NT h je) I+ or _1 )d4 d (13.9.38)

I where

I J= II xxl I (edge surface Jacobian)

SThe case of loading along an =+1 or -1 edge is handled by interchaing 4 and il in the above

relations.

Note that when the reference surface is not taken to be the midsurface, nodal moments are

produced even when h is constant (i.e., in general, f,, * 0,f,s * 0). If edge forces or moments are

SmBASE
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U specified per unit edge length, then nodal forces are computed as explained next. Consider an il

I +1 or -1 edge. Let fi• = fio(4) denote the edge force and let mi" = mj"(4) denote the edge

moment. The nodal forces are then given byI

+1 f m

f4a e1d. = Nal( 1+.* c 1) IIx.I1dt (13.9.39)
miline

m2

Note that m"tne and m2h must have the same sense as 01 and 02. The result is made applicable

I to an = +I or -1 edge if 4 and 11 are interchanged in the above relation.

3 The element external force vector is thus defined by adding all the preceding force vectors

as followsI
fext = fbody + fid + fedge (13.9.40)

13.9.12 Boundary ConditionsI
It is important to realize that the boundary conditions in the present theory are not always

the same as those for the classical thin plate theory. The differences occur in the specification of

the "simply supported" case. In the modified theory, there are two ways of going about this,

I depending on the actual physical constraints. See Hughes 1987, p. 324-327 for the necessary

U details.

I
U
I
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I 14.0 NUMERICAL SIMULATIONS

U 14.1 Introduction

The finite element formulation presented in the previous section was implemented in the

computer program FEAP and several test problems were analyzed. These included various corm-

I posite laminates with flat and curved geometries. The results of these analyses are presented in

this section. For each simulation the geometry, the material properties, the boundary conditions,

I loadings, and the finite element discretization were discussed and various results of the simula-

tion were presented at the end of this section.

Simulation #1

14.1.1 Free Edge Boundary-value Problem [45,-45]s

I The first numerical simulation is a prismatic symmetric laminate having traction-free edges

i at x= ± a and surfaces z = ± h, and loaded by strain applied only on its ends at y = constant.

Each layer is composed of unidirection fiber-reinforced material such that the fiber direction is

I defined by its angle 0 with the y-axis.

3 The elastic properties of various composite materials used in this numerical simulation

have been taken from N. J. Pagano [p. 4, Pagano 1989]. These material properties are EL =

I 137.9 GPa, ET = Ez = 14.48 GPa, GLT = GLZ = GTZ = 5.86 GPa, VLT = VLZ = VTZ = 0.21 where

E subscript L denotes the direction parallel to the fibers, T denotes the in-plane direction perpen-

dicular to the fibers, and the subscript Z denotes the out-of-plane direction.

I In this example a laminate consisting of four unidirectional fibrous composite layers, two

I with their axis of elastic symmetry (fiber direction) at +45 and two at -45 to the longitudinal lam-

inate axis was considered. Figure 14.1 shows the laminate geometry and the coordinate system.

I 1 % strain in opposite directions is applied at y = 0 and y = L, respectively, while it is restrained

i to move in the axial, lateral and thickness directions at the Xz plane passing through y = 1.12. In
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order to solve this problem a finite element mesh comprising 1920 composite shell elements with

I 2665 nodes was generated. The physical dimensions for the numerical simulation were x = 20, y

- 60, z - 2.5, with 12 elements in xdirection, 40 elements in the y direction and 4 finite elements

through the thickness. For each finite element layer through the thickness, the reference surface

I was assumed to be associated with the bottom surface of that layer. In the following figures ele-

ments 241-280 belong to the bottom layer with +45° ply orientation, elements 721-760 and

I 1201-1240 belong to the middle two layers with -450 orientation while elements 1681-1720

belong to the top layer with +450 orientation at a section cut at the dashed cross-section in Figure

14.1. In these results, q-1 is the transverse shear stress Oyz and q-2 is the transverse shear stress

I ,,z. The stress distribution obtained agrees very well with the numerical results by J. N. Pagano

for the same physical dimensions of the problem and material properties and rather much refined

i spatial discretization.

3 1. Figures 1.1 and 1.2 show the various stress components for 9 = +45' and 0 = .450, respec-

tively. For a deeper insight, please see Fig. 1.3-1.8 and the following explanation.

2. Figure 1.4 shows the inplane shear stress axy and is equal in magnitude but opposite in

I sight for the two material sets. The ratio of ayy and cxy agrees closely with that of

Pagano's numerical simulation.

3. Figure 1.5 shows the through the thickness stress component a.. It shows a sudden

increase in value close to the free surface.

4. Figures 1.7 and 1.8 show the transverse shear stresses and Figures 1.9, 1.10 and 1.11

3 represent the moments generated because of the shearing stresses, thereby giving rise to

curvatures near the free edges of the laminate.U
5. Figures 1.12, 1.13 and 1.14 represent the displacement fields in the axial, through-

3 thickness and the transverse directions to the applied loading, respectively, whereas Fig.
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S1.15 represents the distribution of the rotation about the axis of loading. The other rota-

3 tion component is numerically zero as evidenced by Fig. 1.16. The antisymnmetry in the

axial displacement plots which is caused by the 3-D nature of the solution close to the free

I edges is evident in Fig. 1.12.

I 6. It is important to compare Figures 1.13 and 1.17. Both reprsent the distribution of the

through thickness displacement field, but at y = 12 and y = L, respectively. As shown in

3 Fig. 1.17, a twist in the thickness direction takes place, thereby causing the ensuing dis-

placement field become antisymmetric about the symmetry plane which is perpendicular

Uto the thickness direction. Furthermore, at this section, the rotation about the transverse

I axis also becomes non-zero, and can be seen in Fig. 1.20.

I elem. 1681-1720

elem. 1201-1240

I.elem. 721-760

.h elem. 241-280

nodes 2379-2419

3 nodes 1846-1886

nodes 1313-1353

3 nodes 780-820 +4 degrees

nodes 247-287 - 45 degreesI
I

Figure 14.1

B
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Simulation #2

14.1.2 Free Edfe Boundary-value Problem with a circular hole [45,-45]s

This numerical simulation is a prismatic symmetric laminate with a circular hole, having

U traction-free edges at x= ± a and surfaces z = ± h, and loaded by strain applied only on its ends

at y = constant. The ratio of diameter of the hole to the width of the composite is D/W = 0.1.

I Each layer is composed of unidirectional fiber-reinforced material such that the fiber direction is

defined by its angle 0 with the y-axis. The material properties, and the physical dimensions of

the composite are the same as in the preceding case, however the computational mesh is quite

3 different. To solve this problem a mesh containing 720 composite elements per finite element

layer and with four layers through the thickness was generated. The total number of nodes in

I this problem is 3780. The unit diameter cylindrical hole has its center point at (0,0,0). No boun-

dary conditions are applied on the surface of the hole, i.e., it is traction free. The block is con-

strained to move in the axial, transverse or lateral direction by appropriately constraining the

I nodes along the symmetry lines on the Yz section passing through y = 0.

3 1. Figures 2.1 and 2.2 present the various stress components for +45* and -45*, respectively,

at a Xz plane that passes through y = 0.

I 2. Figure 2.3 shows the axial stress oyy across the width of the laminate. Elements 521-540

3 belong to the bottom layer with +450 ply orientation, elements 1241-1260 and 1961-1980

belong to the middle two layers with -450 orientation while elements 2681-2700 belong to

I the top layer with +45* orientation. Results are shown for the transverse plane along the

positive xadirection at y = 0. Away from the hole the stress distribution obtained agrees

very well with the preceding numerical results for the same physical dimensions of the

5 problem and material properties. However a sharp gradient in the stresses can clearly be

seen and the value increases to almost two times its value in the region away from the hole

i or the free edge.
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3. Figure 2.4 shows the inplane shear stress OXY and is equal in magnitude but opposite in sign

I for the two material sets. Once again close to the hole there is a sudden increase in the

value of the stress. The ratio of Oyy and oyy agrees closely with that of the preceding

numerical simulation.

I 4. Figure 2.5 shows the through the thickness stress component o,,. Near the hole the value

I climbs to 12 times its value near the free surface. This shows that if the composite was

designed to withhold the through thickness stress of the free edge and a hole was drilled

3 through it, the very high stress concentration that develops around the hole can result in

delamination, thereby resulting in a very sharp

5. Figures 2.6 and 2.7 are important in the sense that they show the various stress components

along the circumference of the circle for the +45* and the -45* laminates, respectively.

3 These stresses have been evaluated at the Gauss points that are closest to the free edge.

The details for the major stresses can be seen in Figs. 2.8-2.10.

6. Figures 2.11-2.14 represent the displacement and rotation fields along the radial distance

3 from the hole in the lateral direction to the applied strain. They should be compared with

Figs. 1.12-1.15 of the previous numerical simulation. The difference between the two sets

U of plots is that in the previous case we had plotted the entire cross section while in the

present case only half of the section, i.e., radially out from the center of the hole is shown.

It is evident that in the region away from the hole, the numerical results agree closely with

3 that of the simulation without the hole. It shows that the edge effects that arise because of

the circular hole are localized in a small region around it. However, the important observa-

I tion is that although this region is small relative to the entire domain, the gradients in these

regions are the steepest, making it more vulnerable to delamination and high stress concen-

tration.
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I 7. Figures 2.15-2.18 provide a deeper insight in the displacement and rotation pattern around

1 the circular hole. Figure 2.15 shows the axial displacement along the circumference of the

hole. An antisymmetric deformation can clearly be seen which shows that an analogous 3-

D deformation phenomenon takes place at the free edges generated by the hole.

1

elem. 2681-2700
/• ,•-• • ',• elem. 1961-1980

2. L elem. 1241-1260

U -elern. 521-540

nodes 3592-3612

3 nodes 2836-2856

nodes 2080-2100 X

Idnodes 1324-1344+

I nodes 568-588 -45 degrees 2o

I
3 Figure 14.2
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Simulation #3

14.1.3 Free Edgge Boundar-value Problem [0,90]s

The third numerical simulation is again a prismatic symmetry laminate having traction-free

3 edges at = :ta and surfaces z = ±h, and loaded by strain applied only on its ends at y = constant.

Each layer is composed of unidirectional fiber-reinforced material such that the fiber direction is

U defined by its angle O with the -axis.

3 The elastic properties of various composite materials used in this numerical simulation

U have been taken from N. J. Pagano. In this example a laminate consisting of four unidirectional

fibrous composite layers, two with their axes of elastic symmetry (fiber direction) at (r and two

IEat 900 to the longitudinal laminate axis was considered. Figure 14.1 shows the laminate

geometry and the coordinate system. I% strain in opposite directions is applied at y = 0 and y =

3 L, respectively, while it is restrained to move in the axial, lateral and thickness directions by

appropriately constraining the nodes along the symmetry lines at y = 1/2 section. The physical

dimensions of the problem, the computational mesh and the boundary conditions are the same as

I for simulation 1, and therefore are being omitted here.

3 1. Figures 3.1 and 3.2 show the various stress components for 9 = 00 and 9 = 900, respec-

tively. For a deeper insight into the behavior of these stresses the reader is referred to Figs.

3 3.3-3.6.

I 2. Figures 3.7-3.10 represent the displacement and the rotation fields developed at y= L2. In

Fig. 3.7, the antisymmetry in the axial displacement, although extremely small, can still be

I seen which shows that the element is numerically very stable. There is another very impor-

3 tant observation that needs to be made at this stage. Unlike the simulation #1 with [45,-

451s laminate (Fig. 1.15) in which the edge at y = L undergoes a twisting deformation, in

3 the [0,90]s laminate, under the same boundary and loading conditions the response in the
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through thickness direction still stays symmetric. What is important to note is that when-

3 ever one is working with ply orientation which is different from [0,901s case, there is

always going to be a 3-D phenomenon at the edges. So for all practical purposes, in com-

U posite design or in the design of engineering components made of composites, if the load-

ing is applied at a certain angle to the ply laminates which is other than 0 degrees or 90

degrees, a computational tool which accounts for 3-D effects is a must.
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Simulation #4

14.1.4 Free Edge Boundary-value Problem with a Circular Hole [0,90]s

This numerical simulation is a prismatic symmetric laminate with a circular hole, having

E traction-free edges at x= *a and surfaces z -±h, and loaded by strain applied only on its ends at

y = constant The diameter to width ratio D/W = 0.1. The material properties, and the physical

I dimensions of the composite arc the same as in the preceding three cases. The computational

I mesh is identical to the one used in Simulation 2. The difference is that in the present case it is

[0,90]s laminate. The unit diameter cylindrical hole has its center point at (0,0,0), see Fig. 14.2.

I No boundary conditions are applied on the surface of the hole, i.e., it is traction free. The block

i, constrained to move in the axial, tansverse or lateral direction by appropriately constraining

3 the nodes along the symmetry lines at y = 0 surface. We have modelled the entire composite

without the assumption of symmetry.

1. Figures 4.1 and 4.2 show the relative magnitudes of all the stress components for the layers

at 0 degrees and 90 degrees, respectively. As can be seen, the axial stress is orders of mag-

3 nitude greater than all the other stresses and close to the hole it increases to almost three

times its value than in the rest of the domain.

2. Figures 4.3 and 4.4 represent the axial stress ay, and intermalinar normal stress l,, at the

3 periphery of the circular hole.

I 4. Figures 4.5-4.6 and Figs. 4.7-4.9 represent the displacement field along the radial distance

from the hole in the transverse direction to the applied loading, and along the circumfer-

I ence of the circular hole, respectively.

I
I
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Simulation #s5

14.1.5 Extension Test: Comparison with J. N. Reddy [45,-45]s

I We have selected this numerical from the paper of J. N. Reddy. The same problem with

3 identical boundary conditions, material properties and ply orientations has also been solved by

R. M. Jones in his book on Mechanics of Composite Materials.

Consider a thick, symmetric, angle-ply laminate [45,-45]s subjected to axial displacements

I on the ends. The laminate has a length of 2L, width 2W, and thickness 2h, with L = IOW and W

- 8h (see Fig. 14.1). Each of the four material layers is of equal thickness h, and is idealized as a

U homogeneous orthotropic material with the following properties expressed in the material coor-

3 dinate system:

3 EL = 20 x 106 psi , Er = Ez = 2.1 x 106 psi

GLT = GLZ = GZT = 0.85 x 106 psi

gLT = gLZ = ,1 r = 0.21

where subscript L denotes the direction parallel to the fibers, subscript T denotes the inplane

3 direction perpendicular to the fibers, and the subscript z denotes the out-of-plane direction. The

origin of the global coordinate system coincides with the centroid of the three-dimensional com-

I posite laminate. The x-coordinate is taken along the width of the laminate; the y-coordinate is

taken along the length of the laminate; and the z-coordinate is taken through the thickness of the

laminate. Since the laminate is symmetric about the aWplane, only the upper half of the lam-

I inate is modelled. Thus the computational domain is defined by (-W:5 X5 <W, -L:< y5 <L, 0:< z

< 2h). The displacement boundary conditions for this problem areI
u1(O,-LO) = 0 u1 (OL,O) = 0

I
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u2(a-L;z) = 0 u2(KJz) = U.

I u3(AW0) = 0

U In order to solve this problem a finite element mesh comprising 1920 composite shell ele-

i ments with 2665 nodes was generated. The physical dimensions for the numerical simulation

were L = 200, W = 20, z = 2.5, with 40 elements in Xdirection, 12 elements in the y direction

and 4 composite elements through the thickness.

3 1. Figures 5.1-5.3 represent the various significant stress components through the composite

cross section cut at y = 0, i.e., at midspan of the loading axis. These numerical results are

3 very close to the computed numerical values of J. N. Reddy and R. M. Jones, although both

are using a much higher refinement of the mesh in the thickness direction when compared

I to our spatial discretization.

U 2. Figures 5.4-5.6 represent the bending stresses. The general behavior is the same as of the

3 previous cases for [45,-45]s.

I 3. Figures 5.7-5.9 represent the displacement fields as obtained at y = 0 and y = L, respec-

tively. It is interesting to note that the twisting in the through-thickness displacement field

3 that we observed in Simulation 1 is also present in the present simulation.

I
I
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II ~Simulation #6

14.1.6 Bending Analysis [45,-45,451s

This simulation presents a bending test involving a square plate with uniformly distributed

I load. In this simulation the complete plate without the assumption of symmetry was analyzed.

The plate is composed of three laminates stacked in 45/-45/45 cross-ply construction with 0

U measured from the Tj axis. The material properties of Simulation 1 which were taken from J. N.

Pagano have been used in this case as well. The finite element mesh is composed of 675 ele-

ments with 225 elements per finite element layer and 3 finite element layers through the thick-

I ness. The distribution of elements is 15 x 15 x 3. The total number of nodes is 1024.

3 In the present numerical simulation the plate is clamped along the boundaries and a uni-

formly distributed load of intensity q. is applied in the +z direction. Numerical results are

3 reported for the section cut at y = b/2.

3 1. Figures 6.1 and 6.2 present the various components of stresses for the +45 ply on the ten-

sion side and the -45 ply which lies on the axis of symmetry in the z direction, respectively.

A detailed analysis of stresses can be seen in Figs. 6.3-6.8. Since the edges are clamped, the

3 stresses have a certain finite value at the boundary.

I 2. Figures 6.9 and 6.10 present the bending moments.

I 3. We present the displacement and the rotation fields in Figs. 6.11-6.13.

3 We would like to mention that bending analysis similar to this simulation has not been reported

in the literature.

Figure 6.3 shows bending stresses in x direction (c;.) for top, center and bottom layers of

3 the plate. For the center layer, the stresses are calculated at the Gaussian integration points
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1 which are located at the neutral axis of the plate and the finite element simulations predict the

correct zero values. Stresses for the top and bottom layers are symmetric with regard to the neu-

tral axis but with opposite sign.I
Figure 6.4 presents bending stresses in y-y directions for the same cross-section.U
Figure 6.5 is the distribution of in-plane shear for the three plies.I
Figure 6.6 presents the distribution of transverse normal stress component.

Figures 6.7 and 6.8 show the shear stress components for various layers.

I
1 z
3elem. 556-570Y

elein. 331-345

3 elemn. 106-120 g nodes 881-896-- --------------- ... -- • • • •
nodes 625-640

nodes 369-384

nodes 113-128

+ 45 degrees

- 45 degreesI
I

Figure 14.3

I
I
I
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Simulation #7

14.1.7 Bending Analysis [45,-45,45]sI
This simulation again presents a bending test involving a square plate with uniformly distri-

I buted load, but with Simply Supported edges. Once again in this simulation the complete plate

without the assumption of symmetry was analyzed. The plate is composed of three laminates

I stacked in 45/-45/45 cross-ply construction with 0 measured from the 1Q axis. The physical

I dimensions, material properties, loading conditions and the finite element mesh used for analysis

remain unchanged from simulation #6.

1. A detailed analysis of stresses can be seen in Figs. 7.1-7.6. Unlike the clamped case, in the

simply supported case the stresses tend to vanish at the free edges.

I 2. Figures 7.7-7.9 present the bending stresses.

I 3. We present the displacement and the rotation fields in the remaining plots.

I
I
I
I
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Simulation #8

14. 1.8 Cylindrical Shell with Free Edze Boundary [45-451s

I
The last numerical simulation is a cylindrical shell having traction-free edges at r = rlr2,

I loaded by 1% strain applied in -z direction on its ends at 0 - 90 degrees. Each layer is composed

of unidirectional fiber-reinforced material such that the fiber direction is defined by its angle 0

I with the y-axis.

I The elastic properties of various composit materials used in this numerical simulation have

i been taken from N. J. Pagano [p. 4, Pagano 1989]. In this example a laminate consisting of three

unidirectional fiberous composite layers, the top and bottom with their axis of elastic symmetry

(fiber direction) at +45 while the center one at -45 to the longitudinal laminate was considered.

Figure 14.4 shows the laminate geometry and the coordinate system. 1% strain in the -z direc-

3 tions is applied at the cross-section at 0 = 90, while it is restrained to move along the cross sec-

tion at 0 = 0. In order to solve this problem a finite element mesh comprising 675 composite

shell elements with 1024 nodes was generated. The physical dimensions for the numerical simu-

3 lation were ri = 20, r2 = 21.5, z = 20, with 15 elements in the 0 direction, 15 elements in the y

direction and 3 composite elements through the thickness. For each finite element layer through

the thickness, the reference surface was assumed to be associated with the bottom surface of the

composite shell. We will be looking at a section cut at Y = 0 for the displacement and the stress

I fields.

I1. Figure 8.1 shows a,, across the width of the laminate. Elements 1-15 belong to the bottom

3 layer with +45 ply orientation, elements 226-240 belong to the middle layer with -45 orien-

tation while elements 451-465 belong to the top layer with +45 orientation.

I 2. Figure 8.2 shows an. Figure 8.3 shows stress component 0,z. At 0 = 0 it shows tension on

3 the inner layer and compression on the outer layer with +45 ply orientation.
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U 3. Figures 8.4-8.6 represent the above three stress components at a section cut at y = b/2.

I 4. Figures 8.6-8.8 represent the displacement field at section y =0 and Figs. 8.9-8.11 represent

the corresponding values at an interior section with y = b/2.I
I

"nodes 881-896

nodes 625.-640

nodes 369-384

nodes 113-128 -

nodes 769-784

II nodes 513-528

nodes 257-272 - .

I nodes 1-16 - -

elem. 556-570

Z y "elem. 331-345

J • elern. 106-120I+ 45 degrees

elem. 451-465

U 45 degrees elern. 226-240

elem. 1-15

I Figure 14.4
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Stresses,[45,-45]s,1% strain along Y
Section cut at Y=1/2,elems 241-280

250000-

200000-

150000-

*100000

-50000
6 2 6 8 10 12 14 1 18 20

Distance (a) along X

I
'-- Sig-xx "-.." Sig-yy ---u" Sig-xy

---- Sig-zz ---a.... 0-1 04-Q-2

I Figure 1.1

Stresses, [45,-45]s, 1% strain along Y
Section cut at Y=1/2,elems 721-760

2500001 200000- ....+.+÷÷.+÷ +÷ ++÷ ÷ .

150000-

100000

W5 50000.

-50000' . b

.100000 .

0 2 4 6 8 10 12 14 1'6 18 20
Distance (a) along X

-n- Sig-xx "--- Sig-yy --u" Sig-xy

I---- Sig-zz .0-1 0 Q-2

I Figure 1.2
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I
Sig-yy,[45,-45]s,1% strain along Y

Section cut at Y = 1/2
205000 a===-M--- ==ONKEUX=-=WNumaoMMoNu

2000C00

I 195000-
0

3 190000-
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-44 • el 241-280,+ - el 721-760,-4 ---- el 1201-1240, --E-- el 1681-1720,

3 Figure 1.3

Sig-xy,[45,-45]s,1% strain along Y
Section cut at Y = 1/2
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I 60000-

40000 r;

20000
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* Figure 1.4
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U Sig-zz,[45,-45]s,1% strain along Y
Section cut at Y = 1/2I 2000"

1500-
.;, 

44,

1000 .

I500-

I 0 2 4 6 8 10 1'2 1'4 16 118 20
Distance (a) along XI

e--- 0l 241-280,+ -- el 721-760,-4 .... el 1201-1240, -. ... el 1681-1720,I
* Figure 1.5

Sig-xx,[45,-45]s,1% strain along Y
Section cut at Y = 1/2

1500

1000-~

% 

x
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-1 0 2 4 6 8 10 12 14 16 18 20
Distance (a) along X

el -- 0241-280, .. .. .-. el 721-760,.4 -- )*- el11201-1240, el1 . 1681-1720,

i Figure 1.6
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I
Shear q1,[45,-45]s,1% strain along Y

Section cut at Y = 1/2
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Figure 1.7

Shear q2,[45,-45]s,1% strain along Y
Section cut at Y = 1/2
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3 Figure 1.8
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U
M-yy,[45,-45]s,1% strain along Y

Section cut at Y = 1/2
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I Figure 1.9

M-xx,[45,-45]s,1% strain along Y
Section cut at Y = 1/2
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Figure 1.10
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I M-xy,[45,-45]s,1% strain along Y
Section cut at Y =1/2
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i Figure 1.11

Uy,[45,-45]s,1% strain along Y
I Section cut at Y = LI2 nummat = 2
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a Figure 1.12
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I
Uz,[45,-45]s,1% strain along Y3 Section cut at Y = L/2, nummat =2

0.0015 ,j 0.00 ***4*4***+*444****_**********4+++******I*
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-0.0005-.:z Ui 335 *UUNUU Z g

-0.0015 \0
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Distance (a) along X

I
Sn 247-287,45 "+ n 780-820,int -- -n 1313-1353,-45

in 1846-1886,int .... .... n 2379-2419,45

n Figure 1.13

Ux,[45,-45]s,1% strain along Y
0.0 Section cut at Y = L/2, nummat =2

0 
. 4

0.0. ........
3245

Figure1. 14
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Distance (a) along X

S~n 247-287,45 '+n 780-820,int -"-n 1313-1353,-45

n Figure 1. 14
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I
Theta-1, [45,-451s, 1% strain along Y
Section cut at Y = L/2, nummat = 2
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Distance (a) along X

- n 247-287,45 .... .+ n 780-820,int ..... n 1313-1353,-45I..... n 1846-1886,int ........... n 2379-2419,45

3 Figure 1.15

Theta-2,[45,-45]s,1% strain along Y3oSection cut at Y = 1/2, nummat = 2
-1.5E-05
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Distance (a) along X

-N- n 247-287,45 -.-.- n 780-820,int -- •- n 1313-1353,-453 I"n- n 1846-1886,int .... n 2379-2419,45

Figure 1.16
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!
Uz,[45,-45]s,1% strain along Y

Section cut at Y = L, nummat = 2
0.0002
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Distance (a) along XI

--- n 247-287,45 ....... n 780-820,int --- n 1313-1353,-45

In 1846-1886,int ..... n 2379-2419,45

U Figure 1.17

3 Ux, [45,-45]s, 1% strain along Y
Section cut at Y = L, nummat = 2

0.08i

C
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-0.06- •

U 0 2 4 6 8 10 12 14 16 1 20
Distance (a) along XI

-N-n 247-287,45 -- n 780-820,int "'•- n 1313-1353,-453 --E-- n 1846-1886,int -D"n 2379-2419,45

Figure 1.18
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3 Theta-1,[45,-45]s,1% strain along Y
Section cut at Y = L, nummat = 2
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i Distance (a) along X

I + ~n 247-287,45 "÷n 780-820,int --- n 1313-1353,-45

--- n 1846-1886,int .. •.,n 2379-2419,45

I Figure 1.19

3 Theta-2,[45,-45]s,1% strain along Y
Section cut at Y = L, nummat = 2
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i Distance (a) along X

i --)<-- n 247-287,45 .- +-n 780-820,int --- n 1313-1353,-45

II

---- ln 1846-1886,int ".n 2379-2419,45

I Figure 1.20

I BASE



1 14-27

I
Stresses, [45,-45] s, 1% strain (Y),mat =1
Strain Applied along Y, elems 521-540

4000005 350000-t,
300000.
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Radial Distance (a)I
-Sig-xx " Sig-yy "'•' Sig-xy3 -X- Sig-zz ....... q-1 -'-- q-2

I Figure 2.1

Stresses, [45,-45]s, 1% strain (Y) ,mat =2
Strain Applied along Y, elems 1241-1260

350000
300000' - ,.

250000 .. .....

200000"
150000"
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Radial Distance (a)

-4- Sig-xx --'÷-". Sig-yy --- Sig-xy5 --K-- Sig-zz ... .... q-1 - q-2

Figure 2.2
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I
Sig-yy, Pit with Cir Hole, D/W = 0.1
1% Strain Applied along Y,[45,-45]s
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220000"3 200000-
1800001 2 3 4 5 6 7 8 9 10 113 Radial Distance (a)

3 --M-- elems 521-54 ---* elems 1241-1 --1 - elems 1961-1 - -- elems 2681-2

3 Figure 2.3

Sig-xy, Pit with Cir Hole, D/W = U..1
1% Strain Applied along Y, [45,-45]s
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3o�- 150000" 8 9 o011

3 Radial Distance (a)

5 -• elems 521-54 ..... elems 1241-1 -- )- elems 1961-1 --E-- elems 2681-2

3 Figure 2.4
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I
Sig-zz, Pit with Cir Hole, D/W = 0.1

I 1% Strain Applied along Y, [45,-45]s
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1 Figure 2.5

Stress along Circle, [45,-45]s, mat = 13 1% Strain along Y,elem 181-521(inc=20)
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Distance (a) along X, (proj on dia)

I
---- sigma-xx -.-- sigma-yy -- w- sigma-xy3 --i-- sigma-zz "'a.... shear q-1 ----- shear q-2

Figure 2.6
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1

Stress along Circle,[45,-45]s, mat = 2
1% Strain along Y,elem 901-1241 (inc=20)

400000
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Distance (a) along X, (proj on dia)

-M- sigma-xx -.-.-- sigma-yy -- sigma-xy

--K-- sigma-zz .... shear q-1 --- shear q-2

Figure 2.7

3Sig-yy along Circle, [45,-45]s,nummat=2
1% Strain along Y, elem inc = 20
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Distance (a) along X, (proj on dia)
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I Figure 2.8
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I
Sig-xy along Circle, [45,-45]s,nummat=2

200000 1% Strain along Y, elem inc = 20
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3 Figure 2.9

Sig-zz along Circle, [45,-45]s,nummat=2
1% Strain along Y, elem inc 20
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I Figure 2. 10
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Uy, Pit with Cir Hole, D/W =0. 1, 1%Strain
Ld applied along Y,[45,-45]snummat=2
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Radial Distance (a)I
Snodes 568-588,45 "÷-nodes 1324-1344,in --- nodes 2080-2100,-4

nodes 2836-2856,in .... nodes 3592-3612,4

5 Figure 2.11

Uz, Pit with Cir Hole, D/W=0.1,1%Strain
Ld applied along Y,[45,-45]s, nummat=2
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I ---- nodes 2836-2856,in .... nodes 3592-3612,4

Figure 2.12
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I
Ux, Pit with Cir Hole, D/W=O.1,1%Strain3 Ld applied along Y,[45,-45]s,nummat=2
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3 Figure 2.13

Th- 1, Pit with Cir Hole, D/W = O. 1,1%Strai n
Ld applied along Y,[45,-45]s,nummat=2
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Radial Distance (a)I
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Figure 2.14
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Uy along the Circle, [45,-45Js,nummat=2I 1% Strain app along Y, nodal inc = 21
0.005

0 ........................................... ..................................

E -0.0051"

-00-1.0 -0.8 -0.6 -0.4 -. -00 .2 .4 .6 0.8 1.0

Distance (a) alongA.' axis, (Proj on Dia)

nodes 190-568,45 ... 4 nodes 946-1324,int -- ~-- nodes 1702-2080,-45-K-nodes 2458-2836,in -cl ... nodes 321 4-3592,4

Figure 2.15

Uz P.Iong the Circle, [45,-45]s,nummat=23 1% Strain app along Y, nodal inc =21
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Figure 2.16
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I
Ux along the Circle, [45,-45]snummat=2
1% Strain app along Y, nodal inc = 21
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! --"-nodes 2458-2836,in .... '... nodes 3214-3592,4

Figure 2.17

Theta-1 along Circle,[45,-45]s,nummat=2
1% Strain app along Y, nodal inc = 21
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Figure 2.18
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I
Stresses,[O,90]s, 1% strain (Y),rot=O3Section cut at Y=L/2, elems 521--540
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Distance (a) along X
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I "'K--Sig-zz '".'". ql --- q-2

Figure 3.1

Stresses, [O,90]s, 1% strain (Y), rot=903Section cut at Y=L/2, elems 721-760
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Distance (a) along X

I
- _Sig-xx "". Sig-yy "'" Sig-xy3 --- Sig-zz ...e.-. q-1 --- q-2

Figure 3.2
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Sig-yy,[O,90]s, 1% strain along Y
Section cut at Y = L/2
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I Distance (a) along X
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Figure 3.3

Sig-zz,[0,90]s,1% strain along Y
Section cut at Y = L/2
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Figure 3.4
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I
Sig-xx,[O,90]s,1% strain along Y

Section cut at Y = L/2
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Distance (a) along X

3 - el 241-280,0 -+ .el 721-760,9 ---- el 1201-1240, -. R.- el 1681-1720,

Figure 3.5

Shear q-2,[0,90]s,1% strain along Y
Section cut at Y = L/2
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Figure 3.6
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I
Uy,[O,90]s,1% strain along Y

Section cut at Y = 1./2, nummat = 2
2.5E-09,3 2E-09
1.5E-09
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Distance (a) along X

Sn 257-287,0 -. n 780-820,int ---- n 1313-1353,903 -- '" n 1846-1886,int ."... n 2379-2419,0

Figure 3.7

Uz,[0,90]s,1% strain along Y
I Section cut at Y = L/2, nummat = 20.003- 1 • • ••••. .. • = . ... = ••
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Distance (a) along X

Sn 257-287,0 n 780-820,int --'-- n 1313-1353,90
S--E-- ln 1846-1886,int G.- n 2379-2419,0

Figure 3.8
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1

Ux,[0,90]s,1% strain along Y
Section cut at Y = L/2, nummat = 2
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Distance (a) along X

S- n 257-287,0 n 780-820,int -- •- n 1313-1353.90

-- n-- n 1846-1886,int .... n 2379-2419,0

3 Figure 3.9

Theta-1,[0,90]s,1% strain along Y
Section cut at Y = L/2, nummat = 2
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Distance (a) along X
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3 Figure 3.10
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I
Stress,[O,90]s, 1% strain,mat= 1 (0 D)

Strain applied along Y, elems 521-540
3000000

S-2500000-
2000000-

1 6 1500000- " .... .. 4 ....... ..

i000000-

3 500000-

-$00000. r
1-ooo 2 3 4 6 'S 9' 1' 11

Radial Distance (a)
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* Figure 4.1

Stress,[0,90]s, 1% strain, mat =2 (90 D)
Strain applied along Y, elems 1241-1260
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Figure 4.2
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I
Sig-yy along Circle,[0,90]s,nummat=2

1% Strain along Y, elem inc = 20
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I Figure 4.3

Sig-zz along Circle,[0,90]s,nummat=2
1% Strain along Y, elem inc = 20
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Figure 4.4
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I
Uz, Pit with Cir Hole, D/W=O. 1,1 %Strain
Ld applied along Y,[O90]s,nummat=2
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Radial Distance (a)I
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Figure 4.5

Ux, PIt with Cir Hole, D/W=O.1,1%Strain
I Ld applied along Y,0,90]s,nummat=2
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Figure 4.6
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I
Uz along the Circle, [0,90]s,nummat=2
1% Strain app along Y,nodal inc =21
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* Figure 4.7

Ux along the Circle, [0,90]snummat=2
1% Strain app along Y,nodal inc = 21
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Figure 4.8
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I
Uy along the Circle,[O,90]s,nummat=2
1% Strain app along Y,nodal inc = 21
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Figure 4.9
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I
Sig-yy,[45,-45],1% strain (Y),nummat=23 Section cut at Y = -16.67
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Figure 5.1

1 Sig-xy,[45,-45],1% strain (Y),nummat=2
Section cut at Y = -16.67
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I
Shear q2,[45,-45],1% strain(Y),nummat=2

Section cut at Y = -16.67
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M-yy,[45,-45],1% strain (Y),nummat=2
Section cut at Y = -16.67
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I
M-xx,[45,-45],1% strain (Y),nummat=2

Section cut at Y = -16.67
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* "Figure 5.5

M-xy,[45,-45],1% strain (Y),nummat=2
Section cut at Y = -16.67
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Figure 5.6
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Uy,[45,-45Js, 1% strain (Y),nummat=23 Section cut at Y = 0
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i Figure 5.7

Uz,[45,-45]s, 1% strain (Y),nummat=2
Section cut at Y =0
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Figure 5.8
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I
U
I

I Ux,[45,-45]s, 1% strain (Y),nummat=2
Section cut at Y = 0
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U Figure 5.9
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I
Stresses, (45,-45,45],UDL, Clamped Plate
Section cut at Y = b/2, el 106-120,+45
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3 Figure 6.1

Stresses, [45,-45,45], UDL, Clamped Plate
Section cut at Y = b/2, el 331-345,-45
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Figure 6.2
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I
Sig-xx,[45,-45,45],UDL, Clamped Plate3 Section cut at Y = b/2
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3 ---- el 106-120,45 ""... el 331-345-45 --"- el 556-570,45

Figure 6.3

Sig-yy,45,-45,45],UDL, Clamped Platef Section cut at Y = b/2
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Figure 6.4
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I
Sig-xy, [45,-45,45], UDL, Clamped Plate

l Section cut at Y = b/2
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Figure 6.5

Sig-zz,45,-45,45],UDL, Clamped Plate

I 00 Section cut at Y = b/2
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Figure 6.6
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I
Shear Qx,[45,-45,45],UDL, Clamped Plate

Section cut at Y = b/2
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Figure 6.7

Shear Qy,[45,-45,45],UDL, Clamped Plate
Section cut at Y = b/2
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Figure 6.8
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3
M-xx,[45,-45,45],UDL, Clamped Plate

Section cut at Y = b/2
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Figure 6.9

M-yy, [45,-45,45], UDL, Clamped Plate
0 Section cut at Y = b/2
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Figure 6.10
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U
Uz,[45,-45,45], UDL, Clamped Plate

Section cut at Y = bV4/t5) /1"
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I Figure 6.11

Ux, [45,-45,45], UDL, Clampid Plate3 Section cut at Y = b(/15)
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i Figure 6.12
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Theta- 1, [45,-45,45], UDL, Clamped Plate3 Section cut at Y = b(pw15) ?/, •
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I
Stresses, [45,-45,45], UDLS.S. Plate

Section cut at Y = b/2,el 106-120,+45
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Figure 7.1

Sig-xx, [45,-45,45], U D L, Simply Supported
Section cut at Y = b/2
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Figure 7.2
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I
Sig-xy,[45,-45,45],UDLSimply Supported

Section cut at Y = b/2
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£ Figure 7.3

Sig-zz,[45,-45,45],UDL,Simply Supported
Section cut at Y = b/2
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! Figure 7.4
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Shear Ox,[45,-45,45],UDL, Simply Supp PI3 Section cut at Y =b/2
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Figure 7.5

Shear Qy,[45,-45,45], UDL, Simply Supp PI

3 Section cut at Y = b/2
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Figure 7.6

I
I BASE



14-61

I
M-xx,[45,-45,45],UDL,Simply Supported3 Section cut at Y = b/2
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Figure 7.7

M-yy,[45,-45,45],UDL,Simply Supported3 Section cut at Y = b/2
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Figure 7.8
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I
M-xy, [45,-45,45], U DL, Simply Supported3 w. Section cut at Y = b/2
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Ux,[45,-45,45],UDL, Simply Supported PI3 Section cut at Y = b(7t/45) ?/,
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3 Uz,[45,-45,45],UDL, Simply Supported PI
Section cut at Y = b(7/151) 2/,
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3 Figure 7.11

" Theta-1,[45,-45,45],UDL, Simply Supp PI
Section cut at Y = b(7Mt5) ý,P,
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3 Figure 7.12
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Sig-1 1, [45,-45,45] Cylindrical Shell
Section cut at y = b/15
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Figure 8.1I
Sig-22,[45,-45,45] Cylindrical Shell3 Section cut at y = b/15
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U
Sig-33,[45,-45,451 Cylindrical Shell

Section cut at y = b/15U 10000-
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3 Figure 8.3

Sig-1 1,[45,-45,45] Cylindrical Shell
Section cut at y = b/2
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Figure 8.4
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U
3 Sig-22,[45,-45,45] Cylindrical Shell

Section cutat Y = b/2
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* Figure 8.5

Sig-33,[45,-45,45] Cylindrical Shell
Section cut at y = b/2
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Figure 8.6
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I
3 Ux,[45,-45,45], Cylindrical Shell

Section cut at Y = 0 (free edge)
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3 Figure 8.7

3 Uy,[45,-45,45], Cylindrical Shell
Section cut at Y = 0 (free edge)
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I
Uz,[45,-45,45], Cylindrical Shell
Section cut at Y = 0 (free edge)
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3 Figure 8.9

Ux,[45,-45,45], Cylindrical Shell
Section cut at Y = b/2
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I
Uy,[45,-45,451, Cylindrical Shell

Section cut at Y = b/2
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Uz,[45,-45,45], Cylindrical Shell
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IUI BASE



I

I 15. REFERENCES

I Aboudi, J. [19891 "Micromechanical analysis of composites by the method of cells," Appl.

Mech. Rev., Vol. 42, No. 7, 193-221.

I Aboudi, J. [1981a] "Generalized effective stiffness theory for the modeling of fiber-reinforced

composites," Int. J. Eng. Sci., Vol. 17, 1005-1018.

I Aboudi, J. [1981b] "Generalized effective stiffness theory for nonelastic laminated compo-

sites," Int. J. Eng. Sci., Vol. 19, 1269-1281.

I Achenbach, J. D. [1976] "Generalized continuum theories for directionally reinforced solids,"

Arch. Mech., Vol. 28, 257-278.

Achenbach, J. D. [1975] A theory of elasticity with microstructure for directionally reinforced

3 composites, Springer-Verlag, New York.

I Achenbach, J. D., Sun, C. T., and Herrmann, G. [1968] "On vibrations of laminated body,"

ASME paper 68-WA/APM-10.I
Bedford, A., and Stem, M. [1971] 'Toward a diffusing continuum theory of composite materi-

I als," J. Appl Mech., Vol. 38, 8-14.

I Bedford, A., and Stem, M. [1972] "A multi-continuum theory for composite elastic materials,"

Acta Mechanica, Vol. 14, 85.

Bedford, A., and Drumheller, D. S. [1974] "On a generalized effective stiffness theory," J.

Appl. Mech., Vol. 41, 305-307.

I Blinowski, A. [1986] "Nonlinear microstructural continuous model of a laminated composite:

I. Quasi-static phenomenological model," Arch. Mech., Vol. 38, No. 5-6, 553-563.

I BASE



I 15-2

I Capriz, G. [1989] Continua with microstructure, Springer-Verlag, New York.

3 Chia, C. Y. [1988] "Geometrically nonlinear behavior of composite plates: A review," Appl.

Mech. Rev., Vol. 41, No. 12.I
Christensen, R. M. [1979] Mechanics of Composite Materials, Wiley-Interscience, New York.I
Dong, S. B., and Tso, F. K. W. [1972] "On a laminate orthotropic shell theory including

I transverse shear deformation," J. Appl. Mech., 39.

Epstein, M., and Glockner, P. G. [1978] "Nonlinear analysis of multilayered shells," Int. J.

Solids Struct. 13 (11), 1081-1089.

Epstein, M., and Glocker, P. G. [1979] "Multilayered shells and directed surfaces," Int. J.

SLEng. Sci. 17 (5), 553-562.

3 Ericksen, L. L., and Truesdell, C. [1958] "Exact theory of stress and strain in rods and shells,"

Arch. Rat. Mech. Anal., Vol. 1, 295-323.I
Eringen, A. C. [1975] "Continuum mechanics of single-substance bodies," in Continuum Phy-

3 sics, Vol. II (A. C. Eringen, Ed.), Academic Press, New York, 4-127.

Green, A. E., Naghdi, P. M., and Wenner, M. L. [1971] "Linear theory of Cosserat surface

and elastic plates of variable thickness," Proc. Camb. Phil. Soc., Vol. 69, 227-254.

Green, A. E., Naghdi, P. M., and Trapp, J. A. [1970] "Thermodynamics of a continuum with

I internal constraints," Int. J. Eng. Sci., Vol. 1, 8, 891-908.

U Green, A. E., and Naghdi, P. M. [1968] "Rods, plates and shells," Proc. Camb. Phil. Soc.,

3 Vol. 64, 895-913.

I
I BASE



15-3

I Green, A. E., and Zerna, W. [1968] Theoretical Elasticity, 2nd ed., Oxford University Press.

I Green, A. E., Naghdi, P. M., and Rivlin, R. S. [1965] "Directors and multipolar displacements

in continuum mechanics," Int. J. Eng. Sci., Vol. 2, 611-620.

Grot, R. A., and Achenbach, J. D. [1970] "Large deformations of a laminated composite," Int.

J. Solids Struc., Vol. 6, 641-659.

I Hegemier, G. A., and Murakami, H. [1980] "On construction of mixture theories for compo-

site materials by the method of multi-variable asymptotic expansion," in Continuous

models of discrete systems (E. Kroner and K. H. Anthony, eds.) University of Waterloo

Press, 423-441.

I Hegemier, G. A., and Nayfeh, A. H. [1973] "A continuous theory for wave propagation in

laminated composites," J. Appl. Mech., Vol. 40, 503-510.I
Hegemier, G. A., Gurtman, G. A., and Nayfeh, A. H. [1973] "A continuum mixture theory of

I wave propagation in laminated and fiber reinforced composites," Int. J. Solids Struc.,

3 Vol. 9, 395-414.

I Hughes, T. J. R. [1987] The Finite Element Method, Prentice Hall.

U Jones, R. M. [1975] Mechanics of Composite Materials, McGraw-Hill Book Co., New York.

i Koh, S. L. [1967] "Continuum theories for composite materials," in Mechanics of Composite

Materials (F. W. Wendt, H. Liebowitz and N. Perrone, Eds.), Office of Naval Research,

387-402.

I Minagawa, S., Nemat-Nasser, S., and Jamada, S. [1981] "Finite element analysis of harmonic

waves in layered and fiber-reinforced composites," Int. J. Num. Meth. Eng., Vol. 17,

1335-1353.

I BASE



1 15-4

I Mindlin, R. D. [1964] "Micro-structure in linear elasticity," Arch. Rational Mech. Anal., Vol.

16, 51-78.

I Murakami, IL, and Hegemier, G. A. [19871 "A nonlinear constitutive model for metal-matrix

composites," in Design and Analysis of Composite Material Vessels, (D. Hui and T. J.

3 Kozik, eds.), ASME, 97-104.

I Murakami, H., and Akiyama, A. [1985] "A mixture theory for wave propagation in single-ply

laminates. Part 2: Application," J. Appl. Mech., Vol. 52, 338-344.I
Murakami, H. [1985] "A mixture theory for wave propagation in single-ply laminates. Part 1:

3 Theory," J. Appl. Mech., Vol. 52, 331-337.

I Naghdi, P. M. [1982] "Finite deformation of elastic rods and shells," in Proc. IUTAM Sympo-

sium on Finite Elasticity, (D. E. Carlson, R. T. Shield, eds.), Matrinus Nijhoff Publishers,

I Boston, 47-103.

U Naghdi, P. M. [1975] "On the formulation of contact problems of shells and plates," J. Elasti-

city, Vol. 5, 379-398.

I Naghdi, P. M. [1974] "Direct formulation of some two-dimensional theories of mechanics,"

Proc. 7th U.S. National Congr. Appl. Mech., ASME, 3-21.

I Naghdi, P. M. [1972] "The theory of shells and plates," in S. Flugge's Handbuch der Physik,

Vol. VIa/2, (C. Truesdell, ed.), Springer-Verlag, Berlin, 425-640.

I Nayfeh, A. H., and Chimenti, D. E. [1987] "Mechanical modeling and measurements of

fibrous composite," in Solid Mechanics Research for Quantitative Non-Destructive

3 Evaluation," (J. D. Achenbach and Y. Rajapakse, eds.), Martinus Nijhoff Publishers,

Boston, 397-409.

I BASE



I 15-5

I Nayfeh, A. H., and Nemat-Nasser, S. [1972] "Elastic waves in inhomogeneous elastic media,"

J. Appl. Mech., Vol. 9, 690-702.

Nemat-Nasser, S., Fu, F. C. L., and Minagawa, S. [1975] "Harmonic waves in one-, two- and

three-dimensional composites; Bounds for eigenfrequencies," Int. J. Eng. Sci., Vol. 11,

617-642.

Noor, A. K., and Burton, W. S. [1989] "Assessment of shear deformation theories for multi-

layered composite plates," Appl. Mech. Rev., 42(1), 1-13.

Noor, A. K. and Burton, W. S. [1990] "Assessment of computational models for multilayered

composite shells," Appl. Mech. Rev., Vol. 43, No. 4.

I Ochoa, 0. 0., Reddy, J. N. [1992] Finite Element Analysis of Composite Laminates, Kluwer

Academic Publishers.I
Pagano, N. J. [1970] 'Exact solutions for rectangular bidirectional composites and sandwich

plates," J. Comp. Mater., 4, 20-34.

I Pagano, N. J., and Pipes, R. B. [1973] "Some observations on the interlaminar strength of

composite laminates," Int. J. Mech. Sci., Vol. 15, p. 679.

Pagano, N. J. [1989] "Interlaminar response of composite materials," Composite Material

I Series, Vol. 5.

I Pipes, R. B., and Pagano, N. J. [1970] "Interlaminar stresses in composite laminates under

uniform axial extension," J. Comp. Materials, Vol. 4, p. 538.

I Reddy, J. N. [1984] "A refined nonlinear theory of plates with transverse shear deformation,"

Int. J. Solids Struct., 20 (9/10), 881-896.

I
I BASE



15-6

I lReddy, J. N. [1988] "Mechanics of laminated composite structures: Theory and analysis," Lec-

ture Notes, VPI/SU.

Reddy, J. N. [1993] "An evaluation of equivalent-single-layer and layerwise theories of corm-

3 xposite laminates," Composite Structures, 25, 21-35.

I Sun, C. T., Achenbach, J. D., and Herrmann, G. [1968] "Continuum theory for a laminated

mefium," J. Appl. Mech., Vol. 35, 467-475.I
Tiersten, H. F., and Jahanmir, M. [1977] "A theory of composites modeled as interpenetrating

solid continua," Arch. Rational Mech. Anal., Vol. 65, 153-192.

I Truesdell, C., and Toupin, R. A. [1960] The Classical Field Theories, in S. Flugge's Hand-

buch der Physik, Vol. EI/I (S. Flugge, ed.), Springer-Verlag, Berlin, 226-793.

Wang, A. S. D., and Crossman, F. W. [1977] "Some new results on edge effect in symmetric

composite laminates," J. Comp. Mater., Vol. 11.

I Wang. S. S., and Choi, I. [1982] "Boundary-layer effects in composite laminates: Part 1 -

Free-edge singularities," J. Appl. Mech., Vol. 49, p. 541.

I Wang. S. S., and Choi, I. [1982] "Boundary-layer effects in composite laminates: Part 2 -

Free-edge stress solutions and basic characteristics," J. Appl. Mech., Vol. 49/549.

I Whitney, J. M. [1987] Structural Analysis of laminated anisotropic plates, Technion Publish-

ing Co., Lancaster.

I Whitney, J. M., Pagano, N. J. [1970] "Shear deformation in heterogeneous anisotropic plates,"

J. Appl. Mech. 37, 1031.I
Yancey, R. N., and Pindera, M. J. [1988] "Micromechanical analysis of time-dependent

I
I BASE



I 15-7

response of unidirectional composites," in Recent Advances in the Macro- and Micro-

Mechanics of Composite Materials Structures (D. Hui and J. R. Vinson, eds.), ASME,

I New York.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I BASE


